skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cross, Andrew J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 25, 2026
  2. New experiments shed light on the complex interplay between rock deformation and metamorphism. Slab stagnation in Earth’s mantle transition zone may be explained by transient weakening during the olivine–spinel phase transition. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. Laboratory studies of rock rheology rely on purpose-built devices that can apply planetarily relevant pressures, temperatures, and non-hydrostatic stresses. Generating these pressures and stresses requires the application of large forces over small specimen areas. However, because rocks are generally polymineralic and deformation microstructures form across many length scales, it is advantageous to study relatively large (millimetric) specimens. In addition, many microstructures continue to evolve with progressive strain, so it is vital that some apparatus are able to generate enough shear strain to study these deformation phenomena. This contribution describes two new rock deformation apparatus—the Large Volume Torsion apparatus—at Washington University in St. Louis, which are capable of deforming geological specimens at high pressure and temperature (P = 3 GPa; T = 1800 K). Deformation is imposed in a torsional geometry, which enables the generation of extremely large shear strains (γ > 100) relevant to Earth’s plate boundaries and convecting mantle. A large specimen (diameter up to 4.2 mm) permits detailed postmortem microstructural analysis. Apparatus design, calibration, experimental procedures, and some examples of applications are reviewed. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  4. Phase transformations are widely invoked as a source of rheological weakening during subduction, continental collision, mantle convection and various other geodynamic phenomena. However, despite more than half a century of research, the likelihood and magnitude of such weakening in nature remain poorly constrained. Here we use experiments performed on a synchrotron beamline to reveal transient weakening of up to three orders of magnitude during the polymorphic quartz to coesite (SiO2) and olivine to ringwoodite (Fe2SiO4) phase transitions. Weakening becomes increasingly prominent as the transformation outpaces deformation. We suggest that this behaviour is broadly applicable among silicate minerals undergoing first-order phase transitions and examine the likelihood of weakening due to the olivine-spinel, (Mg,Fe)2SiO4, transformation during subduction. Modelling suggests that cold, wet slabs are most susceptible to transformational weakening, consistent with geophysical observations of slab stagnation in the mantle transition zone beneath the western Pacific. Our study highlights the importance of incorporating transformational weakening into geodynamic simulations and provides a quantitative basis for doing so. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  5. Earth's particular style of plate‐tectonics—characterized by localized deformation along dynamic plate boundaries and long‐lived stable plate interiors—appears to be unique among rocky objects in the solar system. However, it is entirely unknown how common plate tectonics and related lithospheric phenomena are among the vast population of exoplanets discovered astronomically or assumed to exist throughout the Universe. In this study, we explore the effect of planetary composition on mylonitization—a set of microphysical processes that is commonly associated with shear localization and plate boundary deformation on Earth. A model for planet compositions, based on stellar spectroscopy, is used to define a plausible range of theoretical mineral abundances in the mantles of rocky Earth‐sized exoplanets. These mineral abundances, along with experimental rock rheology, are used to model microphysical evolution with two‐phase mixing. The model is then used to determine the effect of composition on the time‐scales for shear zone formation. We demonstrate that lithospheres composed of sub‐equal proportions of two mineral phases will form shear zones over relatively short time‐scales, a more favorable condition for forming Earth‐like plate boundaries. In contrast, lithospheres that are nearly monomineralic may require unrealistically long time‐scales to form plate boundary shear zones. Using this approach, we identify specific nearby stars with the optimal range of compositions to be targeted by future astronomical missions, including the Habitable Worlds Observatory. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  6. Talc is expected to be an important water carrier in Earth's upper mantle, and understanding its electrical and seismic properties under high pressure and temperature conditions is required to detect possible talc‐rich regions in subduction zones imaged using geophysical observations. We conducted acoustic and electrical experiments on natural talc aggregates at relevant pressure‐temperature conditions. Compressional wave velocity (Vp) was measured using ultrasonic interferometry in a Paris‐Edinburgh press at pressures up to 3.4 GPa and temperatures up to 873 K. Similar Vp values are obtained regardless of the initial crystallographic preferred orientation of the samples, which can be explained by talc grain reorientation during the experiment, with the (001) plane becoming perpendicular to the uniaxial compression axis. Electrical conductivity of the same starting material was determined using impedance spectroscopy in a multi‐anvil press up to 6 GPa and 1263 K. Two conductivity jumps are observed, at ∼860–1025 K and ∼940–1080 K, depending on pressure, and interpreted as talc dehydroxylation and decomposition, respectively. Electrical anisotropy is observed at low temperature and decreases with increasing pressure (∼10 at 1.5 GPa and ∼2 at 3.5 GPa). Comparison of acoustic and electrical results with geophysical observations in central Mexico supports the presence of a talc‐bearing layer atop the subducted Cocos plate. 
    more » « less